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Laboratoire de Physique Théorique, Ecole Normale Supérieure,†

24 rue Lhomond, F-75231 Paris Cedex 05, France

E-mail: bjulia@lpt.ens.fr, kounnas@lpt.ens.fr

Abstract: We show by explicit construction the existence of various four dimensional

models of type II superstrings withN = 2 supersymmetry, purely vector multiplet spectrum

and no hypermultiplets. Among these, two are of special interest, at the field theory level

they correspond to the two exceptional N = 2 supergravities of the magic square that have

the same massless scalar field content as pure N = 6 supergravity and N = 3 supergravity

coupled to three extra vector multiplets. The N = 2 model of the magic square that

is associated to N = 6 supergravity is very peculiar since not only the scalar degrees of

freedom but all the bosonic massless degrees of freedom are the same in both theories. All

presented hyper-free N = 2 models are based on asymmetric orbifold constructions with

N = (4, 1) world-sheet superconformal symmetry and utilize the 2d fermionic construction

techniques. The two exceptional N = 2 models of the magic square are constructed via a

“twisting mechanism” that eliminates the extra gravitini of the N = 6 and N = 3 extended

supergravities and creates at the same time the extra spin-1
2 fermions and spin-1 gauge

bosons which are necessary to balance the numbers of bosons and fermions. Theories

of the magic square with the same amount of supersymmetry in three and five space-

time dimensions are constructed as well, via stringy reduction and oxidation from the

corresponding four-dimensional models.
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1. Introduction

In four dimensions there is an exceptional family of N = 2 supergravities [1] which

are known to be in correspondence with the symmetric spaces of the “magic square”

of Freudenthal-Rozenfeld-Tits [2]. Two of the four N = 2 exceptional theories in four

dimensions are associated to the Jordan algebras JC
3 and JH

3 . They have the additional

remarkable property that they share the same scalar field contents as some supergravity

models with more supersymmetry. Their scalar manifolds

M3 =
SU(3, 3)

S(U(3) × U(3))
, M6 =

SO∗(12)

U(6)
(1.1)

appear also in N = 3 supergravity with 3 vector supermultiplets and in (pure) N = 6

supergravity, respectively.

The N = 2 model which is associated to N = 6 supergravity appears to be most

peculiar. Not only the scalar fields of both theories are the same but all the other bosonic

degrees of freedom are also the same. This remarkable property motivated us to realize this

exceptional N = 2 theory at the superstring level. In order to proceed in this direction we

found useful to focus our attention more generally on the construction of N = 2 theories

with purely vector multiplet spectrum i.e. without hypermultiplets. As a consequence, the

scalar fields will all belong to vector multiplets and parameterize a projective special Kähler

manifold [3 – 5]. All theories of the “magic square” belong to the class of hyper-free theories.
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In this work we construct four dimensional type II superstring backgrounds with N = 2

space-time supersymmetry.1 The N = 2 hyper-free models are constructed via asymmetric

orbifolds utilizing the free 2d-fermion construction [6, 7]. Due to the left-right asymmetric

construction the universal axion-dilaton pair, S, will not be part of a hypermultiplet,

as would be the case for type II geometric compactifications on a Calabi-Yau manifold.

Instead, S will belong to a vector multiplet as in the heterotic-like compactifications. This

is linked to the fact that supersymmetry is realized in an asymmetric way from the world-

sheet point of view [6, 8, 9], as in the heterotic case or in the asymmetric constructions

of type II obtained in [10, 11]. Instead of having N = (2, 2) superconformal models as

is the case for a Calabi-Yau compactification we rather have N = (4, 1) superconformal

symmetry on the world-sheet [12]. We may note that the c-map correspondence exchanges

hypermultiplets and vector multiplets, it is a T duality in 3d conjugated by scalar/vector

dualities, we shall return to this in due course.

In section 2 we start with the construction of the “S−minimal” N = 2 type II super-

string model which contains a single minimally coupled vector multiplet, S, associated to

the axion-dilaton pair. The S−minimal theory is universal in the sense that it will be part

of the spectrum of all the other more complex hyper-free models.

In section 3 we recall the properties of some exceptional N = 2 supergravities [1] which

are known to be in correspondence with the projective special Kähler symmetric spaces of

the “magic square” of Freudenthal-Rozenfeld-Tits [2].

In section 4 and 5 we construct as type II superstrings the two N = 2 theories of the

“magic square” associated to the N = 6 and N = 3 supergravity theories respectively. We

first recall how to realize the associated theories with higher supersymmetry (N = 6 and

N = 3) and then we introduce a new mechanism which reduces supersymmetry without

changing the scalar content of the models. Its sole effect will be to somehow replace the

gravitini that we want to get rid off, by spin-1/2 fermions and spin-1 gauge bosons, thereby

giving us precisely the spectrum of the N = 2 theories we are looking for. Two extra

theories of the magic square in three space-time dimensions, MD=3
6 =

E7(−5)

SU(2)×SO(12) , and

MD=3
3 =

E6(2)

SU(2)×SU(6) are constructed in section 4 and 5 by stringy dimensional reduction

from the corresponding four dimensional magic theories. Furthermore, by oxidation in five

space-time dimensions the construction of MD=5
6 = SU∗(6)

USP(6) of the magic square is also

obtained. In our stringy set-up, there is an obstruction to define MD=5
3 = SL(3,C)

SU(3) since all

six right-moving coordinates are twisted which prevent the oxidation procedure. Section 6

summarizes our results.

2. The minimal hyper-free theory

Our first theory is a type IIA four dimensional N = 2 model which contains the gravi-

ton supermultiplet and one additional vector multiplet in its massless spectrum. The

1Here and in the following N = N4 corresponds to the number of space-time supersymmetries with

respect to the four dimensional super-Poincaré algebra. It will sometimes be written as N = NL + NR to

recall the world-sheet chirality responsible for the supercharges
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vector multiplet consists of the universal dilaton and axion fields. The model can be eas-

ily obtained via the fermionic construction [6 – 8]; the basis of sets {F, S, S, b1, b1, b2, b3}

is the main data relevant for the construction of the corresponding model which we call

〈F, S, S, b1, b1, b2, b3〉 but it implies also a choice of some generalized GSO projection coef-

ficients (GGSO or discrete torsion). Here F is the set containing all the fermions of the

model in the light-cone gauge, namely two world-sheet fermions ψµ, the 12 fermionized

internal coordinates {yI , wI} with ∂XI = yIwI , I = 1 . . . 6, their 6 world-sheet supersym-

metric partners χI as well as all the corresponding right- moving 2d fermions. The sets S,

S that define the left- and right- supersymmetric GSO projections are given by [6]:

S =
{

ψµ, χ1,...,6
}

, S =
{

ψ
µ
, χ1,...,6

}

. (2.1)

The model defined by the sets {F, S, S} gives rise to the usual N = 4 + 4 supersymmetric

background. In order to reduce the left- plus right-moving space-time supersymmetry

from N = 4 + 4 to N = 2 + 1 resp. to N = 2 + 0, it is necessary to include some extra

“supersymmetry breaking sets”, b1, b1, b2 resp. b1, b1, b2, b3 that define left-right-asymmetric

projections of the type:

(Z2)left × (Z2 × Z2)right

resp.

(Z2)left × (Z2 × Z2 × Z2)right

with

b1 =
{

ψµ, χ1,2, y3,4, y5,6, y1, w1 | y5, w5
}

b1 =
{

ψ
µ
, χ1,2, y3,4, y5,6, y1, w1 | y5, w5

}

b2 =
{

ψ
µ
, χ3,4, y1,2, w5,6, y3, w3 | y6, w6

}

b3 =
{

ψ
µ
, χ5,6, w1,2, w3,4, y6, w6 | y2, w2

}

(2.2)

The above choices of the “supersymmetry breaking sets” define consistent models since

they satisfy all the overlapping conditions necessary in the fermionic construction [6].

b1 ∩ b2 =
{

ψ
µ
, y1,3

}

; b1 ∩ b1 =
{

y5 | y5
}

; b2 ∩ b1 =
{

w5 | y6
}

b3 ∩ b1 =
{

ψ
µ
, y6, w1

}

; b3 ∩ b2 =
{

ψ
µ
, w3,6

}

; b3 ∩ b1 = ∅ (2.3)

and

b1 ∩ b2 ∩ b3 ∩ b1 = ∅. (2.4)

The presence of some left- and right-fermionized coordinates, {yi, wi|yj, wj}, in the bI , I =

1, 2, 3 and b1 guarantees the free-action of the Z2’s defining the asymmetric orbifolds [13]

and thus the absence of massless states coming from the “twisted sectors”. The models are

defined completely once we specify the signs of the generalized GSO coefficients (GGSO).

We have chosen to take minus one for all but one:

(−1) b1 = (−1) b2 = (−1) b3 = (−1)b1 = −1 , (2.5)
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in addition to the choices

(−1)F = 1, (−1)S = (−1)S = −1 , (2.6)

that define the usual N = 4 + 4 model in type IIA theory.

The model 〈F, S, S, b1, b1, b2〉 without the set b3, defines a theory possessing N = 2+ 1

space-time supersymmetry and SU(3, 1) as a non-compact group of global symmetry [8].

The additional set b3 enables us to define the model 〈F, S, S, b1, b1, b2, b3〉 in which all left-

moving space-time supersymmetries are broken. This results in a N = (4, 1) superconfor-

mal theory on the world-sheet and N = 2 + 0 space-time supersymmetry.

Since b3 defines a Z2 action that acts freely, it does not introduce additional states

from its twisted sector in the massless spectrum either. Besides, all the bosonic fields from

the “parent” N = 2+1 theory are projected out apart from the graviton, the dilaton-axion

pair and two vector gauge fields. One is the graviphoton of the gravity multiplet and the

other corresponds to a matter vector multiplet.

Although the massless spectrum of the N = 2 model consists of the gravitational mul-

tiplet and just one vector multiplet, it is important to determine the coupling between the

vector and scalar fields and the structure of the scalar moduli space. It is well known [8] that

the axion-dilaton pair parameterizes a coset space which is topologically a pseudosphere

SU(1, 1)

U(1)
. (2.7)

Let us recall that the N = 2 effective supergravity allows a priori two types of couplings

between the vector and scalar fields which are distinguished by the curvature of the moduli

space [8, 5] even though their topological structure is the same. Indeed, when the coupling

between the scalar and vector fields is “non-minimal” the Kähler potential is given by

K = −3 log
(

S − S
)

. (2.8)

On the other hand, when the coupling is “minimal” the Kähler potential is given by

K = − log(S − S) . (2.9)

From the form of the axion-dilaton kinetic terms in type II superstrings we know that this

last case applies to the structure of the axion-dilaton moduli space [8]. The Poincaré half

plane is always isometrically embedded in a possibly bigger moduli space G/H.

In the language of N = 2 supergravity we recall that S corresponds to a non-

homogeneous coordinate on the moduli space [3 – 5]. Homogeneous coordinates are in-

troduced through S = Z
Z0

and more generally ti = Zi

Z0
, i = 1 . . . n if there are 2n+2 moduli

of the vector multiplets. In terms of these, the Kähler potential of vector-moduli space

is fixed by the prepotential F (Z0, Zi) - which is a holomorphic homogeneous function of

degree 2 - through [3 – 5]

K = − log iIm[ ZI∂
IF (ZJ ) ] , (2.10)
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with the index I = (0, i). It can alternatively be expressed in terms of the non-homogeneous

coordinates ti and the function f(ti) defined by F (ZI) = −iZ2
0f(ti) through2

K = − log
[

2
(

f (ti) + f
(

ti
))

−
(

ti − ti
)

(

∂if − ∂
i
f
) ]

. (2.12)

In the case of non-minimal coupling with coset space SU(1, 1)/U(1) the prepotential is

cubic in Z and given by F (Z,Z0) = iZ
3

Z0
. On the other hand, the prepotential in the case

of minimal coupling to the vector fields is F (Z,Z0) = Z2 − Z2
0 . The latter prepotential is

the one we must use to describe the axion-dilaton pair in the case of interest. Therefore,

we have shown that it is possible to construct a “minimally” coupled N = 2 hyper-free

model whose scalar sector forms a special Kähler coset space

SU(1, 1)

U(1)
.

This is interesting and rather unexpected. Indeed, in the spirit of the c-map [14] the

distinction between the “minimal” and “non-minimal” structures is equivalently expressed

by saying that the dimensional reduction to three space-time dimensions of these models

on a circle, gives rise to 3d supergravity models with different scalar manifolds (after

dualization in three dimensions of the vector fields into scalars). In the case of a “non-

minimal” coupling one finds that the scalars together with the scalar-dual of the vector

gauge field, parameterize the special quaternionic manifold3

G2(2)

SO(4)
, (2.13)

whereas in the case of “minimal” coupling one finds that the scalar parameterize the special

quaternionic-Kähler manifold,
U(2, 2)

U(2) × U(2)
, (2.14)

which is somewhat exotic from the point of view of Calabi-Yau or symmetric orbifold

N = (2, 2) compactifications.

3. Hyper-free N = 2 theories of the “magic square”

More general hyper-free N = 2 models can be constructed with higher number nV of vector

multiplets via asymmetric orbifold constructions starting from type II superstrings with

N = 2 + 4, N = 2 + 1 or eventually N = 2 + 2 initial supersymmetry. The breaking of the

right-moving supersymmetry via freely acting asymmetric orbifold gives rise to N = 2 + 0

hyper-free models. In all constructions of this type, the axion-dilaton pair belongs to one of

2In this change of notation one makes use of the invariance of the theory under a Kähler transform of

the Kähler potential

K → K + Λ + Λ (2.11)

with Λ an arbitrary holomorphic function of the moduli.
3One can read [15] for a discussion of special Kähler and special quaternionic manifolds.
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the vector multiplets and it appears always with “minimal coupling”. Since in our construc-

tion the last projection is assumed to act freely, the scalar Kähler manifold of the final N =

2 theory is necessarily a sub-manifold of MN=2 the scalar manifold of the initial “mother”

theory with higher supersymmetry, let us consider for instance for N=4+2 or N=2+1:

MN=2 ⊆
SO∗(12)

U(6)
, or MN=2 ⊆

SU(3, 3)

S(U(3) × U(3))
. (3.1)

The special cases where the dimension of the scalar manifold is maximal, dimMN=2
6 =30

and dimMN=2
3 =18, hold for N = 2 theories which are known to be in correspon-

dence with the projective special Kähler symmetric spaces of the “magic square” of

Freudenthal-Rozenfeld-Tits [2, 1].

These two N = 2 “magic” theories are associated to the Jordan algebras JH
3 and JC

3 .

They are known to have the same scalar field content as some supergravity models with

more supersymmetries. TheN = 2 theory that is associated to N = 6 supergravity appears

to be the most peculiar one. Not only the scalar fields but also the gauge bosons degrees

of freedom are the same.

In the next two sections we provide a construction of the two hyper-freeN = 2 “magic”

theories at the superstring level.

Before that, let us recall some properties of the N = 6 supergravity, namely the helicity

structure of the N = 6 graviton (G) and gravitino (g) supermultiplets

G :

(

+2,+
3

2

6

,+115,+
1

2

20

, 015,−
1

2

6

,−1

)

⊕

(

+1,+
1

2

6

, 015,−
1

2

20

,−115,−
3

2

6

,−2

)

g :

(

+
3

2
,+16,+

1

2

15

, 020,−
1

2

15

,−16,−
3

2

)

(3.2)

where we indicate the multiplicity of each helicity in exponent. The branching rule under

N = 6 → N = 2,

G → G ⊕ 4g ⊕ 7V ⊕ 4H (3.3)

where V and H denote respectively vector-multiplets and hyper-multiplets. The 30 scalars

of the N = 6 supergravity parameterize a coset

SO∗(12)

U(6)
. (3.4)

Remarkably, one of the N = 2 theories of the magic square [1] possesses exactly the same

bosonic content as the N = 6 (pure) supergravity. It is associated to the Jordan algebra

called JH
3 . Both N = 6 and N = 2 supergravities contain one graviton, 15 vector fields

(one of them being the graviphoton and 14 belonging to vector multiplets in the case of

the N = 2) and the 30 scalars with the structure we have just indicated.

Before we proceed further, we would like to make some remarks concerning the

fermionic spectrum: from the decomposition of the eq.(3.3), N = 6 supergravity con-

tains 26 extra fermions in addition to the 2 gravitini from the graviton multiplet G|N=2,

namely 22 have spin 1/2 and the last 4 are spin-3/2 gravitini. This is the same as the

number of fermionic degrees of freedom of the JH
3 supergravity. Hence the difference is

that the extra 4 gravitini must be replaced in the N = 2 model by 4 spin-1/2 fermions.
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4. Superstring construction of the magic MN=2

6

This section is devoted to the superstring construction of the exceptional N = 2 super-

gravity based on the Jordan algebra JH
3 [1] which contains at the massless level the same

number of scalars and gauge bosons as pure N = 6 supergravity.

The simplest way to get a N = 6 theory in the type IIA setup is to start from the type

II superstring with N = 4 + 4 supersymmetry and then to use a freely acting asymmetric

Z2 orbifold which reduces the left-moving supersymmetries to N = 2 + 4 [8, 10, 11]. In

the fermionic construction language [6], we start with the N = 4 + 4 model 〈F, S, S〉.

Then, the Z2 asymmetric breaking to N = 2 + 4 is obtained by choosing one additional

supersymmetry breaking set for instance b′ [8],

b′ =
{

ψµ, χ1,2, y3,4,5,6, y1, w1 | y1, w1
}

, (4.1)

and fixing the GGSO projection by the choice of sign (−1)b
′
= −1.

Although the 〈F, S, S, b′〉 model defines an initial N = 2 + 4 theory, it will turn out that

it is not a good starting point to reduce the right-moving gravitini and obtain the magic

N = 2 + 0 theory.

4.1 A failed attempt

Indeed, we could add an additional breaking set bS

bS =
{

y2, w2 | y2, w2
}

∪ S (4.2)

that would breakN = 2+4 toN = 2+0 removing the four right- moving gravitini. However,

this would remove at the same time the RR-scalars and so, the number of remaining scalar

degrees of freedom of the N = 2 theory would be 14 instead of 30. The scalar manifold of

this hyper-free N = 2 model, 〈F, S, S, b′, bS〉,

MN=2 =
SU(1, 1)

U(1)
×

SO(2, 6)

SO(2) × SO(6)
⊂

SO∗(12)

U(6)
(4.3)

is a sub-manifold of the desired MN=2
6 with dimension 14 instead of 30.

To obtain the desired “magic” N = 2+ 0 it seems necessary to construct in a different

way the initial N = 2 + 4 theory so that, the RR scalars and gauge bosons survive the

additional supersymmetry breaking projection from N = 2 + 4 to N = 2 + 0.

4.2 N = (2 + 2) + 4 construction with (3/2) ↔ (1/2) magic twist

To define the asymmetric orbifold mechanism which has the property to replace the 4

gravitini of the N = 6 by 4 fermions and at the same time keeps the RR-scalars, it is

necessary to prepare the initial N = 2 + 4 theory in a more sophisticated way that we will

describe in detail below.

We start with the string model 〈F, S, S, b〉, where b is purely left-moving

b =
{

ψµ, χ1,2, y3,4,5,6
}

. (4.4)

– 7 –
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b defines an asymmetric, non-freely acting orbifold acting on 〈F, S, S〉 model and breaks the

supersymmetry (in the untwisted sector), from N = 4+4 → N = 2+4. The twisting action

of b on the untwisted sector is thus similar to the one of b′. There is however a fundamental

difference between b and b′; in b all elements are left-moving. This holomorphic property

will be crucial in what follows.

Different choices of GGSO projection give different models. Choosing for instance

(−1)b = −1, the massless spectrum would be given by:

∅̂ super-sector

[

(

ψµ, χ1,2
)

⊕ sp
(

ψµ, χ1,2
)

−
sp

(

χ3,4,5,6
)

+

]

[

(

ψ
µ
, χ1,...,6

)

⊕ sp
(

ψ
µ
, χ1,...,6

)

−

]

, (4.5)

b̂ super-sector

[

sp
(

ψµ, χ1,2
)

−
sp

(

y3,4,5,6
)

+
⊕sp

(

χ3,4,5,6
)

−
sp

(

y3,4,5,6
)

+

]

⊗

[

(

ψ
µ
, χ1,...,6

)

⊕sp
(

ψ
µ
, χ1,...,6

)

−

]

.

(4.6)

In each super-sector our notation indicates the massless states in the sectors [NS ⊕ R] ⊗
[

NS ⊕ R
]

. Even though the untwisted ∅̂ super-sector corresponds to a theory with N =

2+4 supersymmetry as in the previous b′-construction, here the supersymmetry is extended

to N = (2 + 2) + 4 because now the twisted super-sector b̂ contains massless states and

among them two extra left-moving gravitini. This supersymmetric extensions happens due

to the left-moving “holomorphic structure” of b. Thus, the 〈F, S, S, b〉 twisted construction

still has maximal N = 8 supersymmetry constructed in a b-twisted manner. We should

stress here that this supersymmetric extension from N = 6 → N = 8 of the 〈F, S, S, b〉

model is a stringy phenomenon and can be seen algebraically at the level of the modular

invariant partition function which implies the inclusion in the spectrum of the b-twisted

sectors with h 6= 0:

Zb =
1

|η|8
1

4

∑

h,g

Z6,6

[

h
g

]

|SO(6)

∑

a,b

(−1)a+b+ab θ

[

a+ h

b+ g

]

θ

[

a− h

b− g

]

θ

[

a

b

]2

×
1

2

∑

a,b

(−1)a+b+ab θ

[

a

b

]4

(4.7)

where Z6,6

[

h
g

]

∣

∣

∣

SO(6)
is the contribution of the six internal coordinates ∂φI

L = (yω)I , I =

1, 2, . . . 6. The directions φ3,4,5,6
L are twisted by Z2 induced by b. Remember that in the

fermionic construction the coordinate currents are given in terms of the two dimensional free

fermions, so that the Z2 acts on y3,4,5,6 only. ω3,4,5,6, y1,2 and ω1,2 are invariant under Z2.

Z6,6

[

h

g

]

SO(6)

=
1

2|η|4

∑

γ,δ

θ

[

γ

δ

]2

y1,2,ω1,2

θ

[

γ

δ

]2

y1,2,ω1,2

(4.8)

×
(−1)γg+δh

|η|8
θ

[

γ

δ

]2

ω3,4,5,6

θ

[

γ + h

δ + g

]

y3,4

θ

[

γ − h

δ − g

]

y5,6

θ

[

γ

δ

]4

y3,4,5,6,ω3,4,5,6

.
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To see that this leads to an N = 4 + 4 supersymmetry we first perform the sum over the

(a, b) indices using the Jacobi identity

1

2

∑

a,b

(−1)a+b+ab θ

[

a+ h

b+ g

]

(v) θ

[

a− h

b− g

]

(v) θ

[

a

b

]2

(v) = −θ

[

1

1

]2

(v) θ

[

1 + h

1 + g

]

(v) θ

[

1 − h

1 − g

]

(v).

(4.9)

This partial summation shows that the partition function has a second order zero for v → 0

from the left-moving sector. This can be traced to the presence of two left-moving massless

gravitini in the untwisted sector and indicates at least N = 2 space-time supersymmetry

from this sector. However to see that the full N = 4 + 4 supersymmetry is present we

need to show that an extra double zero is present in the partition function. Then we are

left to compute:

S =
1

2

∑

h,g

(−1)γg+δhθ

[

1 + h

1 + g

]

θ

[

1 − h

1 − g

]

θ

[

γ + h

δ + g

]

θ

[

γ − h

δ − g

]

. (4.10)

Defining

(A,B) = (1 − h, 1 − g); (γ, δ) = (1 +H, 1 +G) , (4.11)

and using the Jacobi identity associated to (A,B), one can show that:

S = (−1)GH+G 1

2

∑

A,B

(−1)A+B θ

[

A

B

]2

(v) θ

[

A+H

B +G

]

(v) θ

[

A−H

B −G

]

(v)

= (−1)G(H+1) θ

[

1

1

]2

(v) θ

[

1 +H

1 +G

]

(v) θ

[

1 −H

1 −G

]

(v)

= θ

[

1

1

]2

(v) θ

[

γ

δ

]2

(v), (4.12)

so that overall

Zb =
1

|η|8
θ

[

1

1

]4

θ

[

1

1

]4 1

2

∑

γ,δ

θ

[

γ

δ

]6

θ

[

γ

δ

]6

. (4.13)

Thus, we have shown explicitly that the b−twisted partition function exhibits a zero

of order four on the holomorphic and anti-holomorphic sectors. The two extra zero’s

correspond to the presence of two left-moving massless gravitini in the b−twisted super-

sector as we have mentioned above. Actually the computation of the string helicity

super-traces [16, 17] would let us conclude that the 〈F, S, S, b〉 model has a maximal

N = 8 supersymmetry. Other choices of the GGSO projection coefficients define non

trivial lattice shifts. Choosing for instance the “factorized point” of the Z6,6 such that

Z6,6

[

h

g

]

twisted

= Z4,4

[

h

g

]

twisted

Γ2,2(T,U)

|η|4
(4.14)

where the twisted lattice Z4,4

[

h
g

]

twisted
correspond to the contribution of the

∂φI = yIωI , I = 3, 4, 5, 6 directions which are twisted by Z2. The Γ2,2(T,U) lat-

tice is the contribution of the untwisted directions ∂φ1,2 = (yω)1,2. The latter depends on
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the T,U moduli which are associated to the 2-torus. In the fermionic construction T and U

are fixed to the self-dual point T = U = i. A way to break the right-moving space-time su-

persymmetry “spontaneously” is to correlate the right-moving helicity with a lattice shift.

However, in order to preserve the bosonic content of the massless spectrum it is necessary

to keep some of the twisted Ramond-Ramond states. This leads us to correlate the helicity

characters (a, b), the twisted (h, g) characters with a lattice shift of the Γ2,2 lattice [18].

To do that one defines the shifted lattice sum as

Γ2,2

[

a+ h

b+ g

]

=
∑

ni,mj

(−1)(a+h)m1+(b+g)n1+m1n1

×
T2

τ2
exp

[

−2iπBijm
inj − πGij

(mi + niτ)(mj + njτ)

Im τ

]

(4.15)

with

Gij =
ImT

ImU

[

1 Re U
Re U |U |2

]

, Bij = ǫij ReT (4.16)

written in the Poisson dual form. This lattice sum differs from Γ2,2(T,U) by the intro-

duction of the modular invariant phase (−1)(a+h)m1+(b+g)n1+m1n1 . Note that the right

helicity shift has the usual form of a right-moving “temperature” coupling [18] while the

(−1)hm1+gn1 shift acts on the twisted sectors (h, g) of the Z2 orbifold. This phase modifi-

cation does not change the modular covariance properties of the lattice sum. Its effect is

to make massive the sectors corresponding to a+ h = 1 mod 2.

Some comments are in order:

• In the ∅̂ super-sector we loose the R-R and NS-R sectors which contain 8 vectors, 16

scalars, 12 spin 1/2 fermions and 4 gravitini coming from the right moving side.

• The b̂ super-sector contains the NS-R and R-R sectors which provide us with 8 vectors,

16 scalars and 16 spin 1/2 fermions.

We see that overall, all these operations have had no effect on the bosonic content of

the theory with respect to the N = 2+ 4 model corresponding to the b′-orbifold. However,

from the fermionic fields point of view we have lost 4 gravitini but gained 4 additional spin

1/2 fermions. This is what we call a (3/2) ↔ (1/2) twist.

Given the number of vector fields it is clear that no hypermultiplet is present in the

spectrum. However since 16 among the 30 scalar fields now come from the b-twisted sector

it is not immediate to conclude what is the special Kähler manifold that is associated to

the scalars. Several possibilities exist with this dimension namely

SU(1, 15)

U(1) × SU(15)
;

SO(2, 14)

SO(2) × SO(14)
×

SU(1, 1)

U(1)
;

SO∗(12)

U(6)
(4.17)

The first two need either a rank 15 or rank 9 symmetry group to be realized in a linear

way which is a too large symmetry to be realized in the model under consideration. On

the other hand, one can realize explicitly a rank 6 symmetry group through

SO(2)χ1,2 × U(1)φ,a × SU(2)+
y3,4,5,6 × SU(4)χ3,4,5,6 ⊂ U(6) (4.18)
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where, in the above equation, the fields associated to each group factor are indicated as

lower indices.

Furthermore, from the coset decomposition of

SO∗(12)

U(6)
→

(

SU(1, 1)

U(1)
×

SO(2, 6)

SO(2) × SO(6)

)

h=0

×

(

SU(2, 4)

U(1) × SU(2) × SU(4)

)

h=1

, (4.19)

we recognize the coset structure of the 14 untwisted moduli from the ∅̂ super-sector (h = 0)

and the 16 RR-moduli coming from the twisted b̂-super-sector (h = 1). This decomposition

is identical to the one of N = 2 + 6 model described in ref. [8].

We shall momentarily proceed to the construction of the other four dimensional magic

models, but we would like to make some comments on the reduction and oxidation of

MN=2
6 to three and five space-time dimensions:

(i) The three dimensional case is obtained via S1 compactification. The sets S, S

and b are taken to be the same as in the four dimensional construction. In three

dimensions however the dimension of the scalar manifold is extended via 3d duality

transformation of the vector gauge bosons to scalars. In the untwisted h = 0 sector

the dimension of the 3d scalar manifold becomes:

14 (4d-scalars)+14 (4d-vectors)+2 (4d-graviphoton)+2 (3d-graviphoton, g3,µ)= 32.

Altogether parameterize (via the c−map) the quaternionic manifold,

MD=3
h=0 =

SO(4, 8)

SU(2) × SU(2) × SO(8)
(4.20)

In the h = 1 sector the dimension of the 3d scalar manifold becomes:

16 (4d-RR scalars) + 16 (4d-RR vectors) = 32.

The 32 scalars from the h = 0 sector together with the 32 scalars from h = 1 sector

parameterize in 3d the quaternionic manifold of the magic square [2, 1]:

MD=3
6 =

E7(−5)

SU(2) × SO(12)
, (4.21)

as expected by a c−map operation on the four dimensional MN=2
6 magic model.

(ii) The five dimensional case is obtained from MN=2
6 magic model via one dimensional

oxidation. Here also the sets S, S and b are the same as in the four dimensional case.

The only difference is the replacement of the two dimensional lattice Γ2,2 by the one

dimensional lattice Γ1,1. Also, we identify χ1 ≡ ψ5 and y1w1 ≡ ∂X5, y1w1 ≡ ∂X5;

X5 is taken non-compact. In five dimensions the number of scalars is reduced since

they are becoming the 5th components of higher spin fields. In the h = 0 sector the

6 scalars parameterize the manifold

MD=5
h=0 = SO(1, 1) ×

SO(1, 5)

SO(5)
≡ SO(1, 1) ×

SO(1, 5)

SP(4)
(4.22)

In the h = 1 sector the RR-states are decomposed in 5d vectors and 5d scalars. The
1
2 of the 4d-scalar degrees of freedom in this sector are eaten by the 5d-vectors. So
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we are left with 8 5d-scalars that parameterize the manifold

MD=5
h=1 =

SP(2, 4)

SP(2) × SP(4)
(4.23)

The 6 scalars from h = 0 sector together with the 8 from the h = 1 sector

parameterize in five space-time dimensions the manifold of the magic square [2, 1],

MD=5
6 =

SU∗(6)

USP(6)
, (4.24)

as expected by the supersymmetry conserving operations via Oxidation ↔ Reduction.

5. Superstring construction of the magic MN=2

3

The other N = 2 “magic” theory we would like to construct in four space-time dimensions

is the hyper-free theory which has the bosonic spectrum of the N = 3 supergravity coupled

to three extra vector multiplets. The scalar manifold is Kähler and contains 18 scalars.

M3 =
SU(3, 3)

S(U(3) × U(3))
(5.1)

Here also the string construction has to be asymmetric involving asymmetric twists and

lattice shifts.

Our starting point is a twisted realization of the N = 8 based on the holomorphic and

anti-holomorphic basis sets

b′1 =
{

ψµ, χ1,2, y3,4, y5,6
}

b
′
1 =

{

ψ
µ
, χ1,2, y3,4, y5,6

}

b
′
2 =

{

ψ
µ
, χ3,4, y1,2, y5,6

}

. (5.2)

The holomorphic set A

A =
{

y3,4y5,6w3,4w5,6
}

(5.3)

will be used in our construction as well. b′1 induces a Z2
b′1

projection which seems to break

the left-moving supersymmetry from 4 to 2. Also b
′
1, b

′
2 induce Z2

b
′
1

× Z2
b
′
2

projections that

seem to break the right-moving supersymmetry from 4 to 1. However, these supersymmetry

breakings are not efficient in general due to the (anti-) holomorphic structure of the basis

sets that imply the presence of extra gravitini in the twisted sectors of the theory. Thus,

there is a choice of the GGSO coefficients where the supersymmetry is maximal. Explicitly,

this choice defines the following partition function for the N = (2 + 2) + (1 + 1 + 1 + 1)
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model {S, b′1;S, b
′
1, b

′
2;A}

ZN=8 =
1

|η|24
1

2

∑

h1,g1,

1

2

∑

h1,g1,

1

2

∑

h2,g2

1

2

∑

γ,δ

1

2

∑

A,B

×
1

2

∑

a,b

(−1)a+b+ab θ

[

a

b

]

θ

[

a

b

]

θ

[

a+ h1

b+ g1

]

θ

[

a− h1

b− g1

]

(−)h1g1+AB

× θ

[

γ

δ

]

θ

[

γ

δ

]

θ

[

γ −A

δ −B

]

θ

[

γ +A+ h1

δ +B + g1

]

θ

[

γ −A

δ −B

]

θ

[

γ +A− h1

δ +B − g1

]

× θ

[

γ

δ

]

θ

[

γ + h1

δ + g1

]

θ

[

γ

δ

]

θ

[

γ − h2

δ − g2

]

θ

[

γ

δ

]

θ

[

γ − h1 + h2

δ − g1 + g2

]

(−)h1g1+h2g2

×
1

2

∑

a,b

(−1)a+b+ab θ

[

a

b

]

θ

[

a+ h1

b+ g1

]

θ

[

a+ h2

b+ g2

]

θ

[

a− h1 − h2

b− g1 − g2

]

(5.4)

The choice of the phases and the arguments of the θ-functions is dictated by modular

invariance and the existence of maximal supersymmetry. Indeed, the existence of 4 left-

moving supersymmetries can be shown explicitly by using the Jacobi identity associated

to the the arguments (a, b) and then to (h1, g1) as previously. The 4 right-moving super-

symmetries can be visualized by using first the Jacobi identity associated to (a, b) and then

the one associated to (h1, g1) and then to (h2, g2).

The massless spectrum of the above N = 8-twisted construction is the following:

∅̂ super-sector
[

(ψµ, χ1,2) ⊕ sp(ψµ, χ1,2)−sp(χ
3,4,5,6)+

]

(5.5)

⊗
[

ψ
µ
⊕ sp(ψ

µ
)−sp(χ

1,2)−sp(χ
3,4)+sp(χ

5,6)+

]

,

b̂′1 super-sector
[

(sp(ψµ, χ1,2)−sp(y
3,4,5,6)+ ⊕ sp(χ3,4,5,6)+sp(y

3,4,5,6)+
]

(5.6)

⊗
[

(ψ
µ
, χ1,2) ⊕ sp(ψ

µ
)−sp(χ

1,2)−sp(χ
3,4)+sp(χ

5,6)+

]

,

ˆ
b
′
1 super-sector
[

(ψµ, χ1,2) ⊕ sp(ψµ, χ1,2)−sp(χ
3,4,5,6)+

]

(5.7)

⊗
[(

sp(ψ
µ
)−sp(χ

1,2)+⊕sp(χ3,4)+sp(χ
5,6)+

)

⊕ sp(y3,4)+sp(y
5,6)+

]

,

ˆ
b
′
2 super-sector
[

(ψµ, χ1,2) ⊕ sp(ψµ, χ1,2)−sp(χ
3,4,5,6)+

]

(5.8)

⊗
[(

sp(ψ
µ
)−sp(χ

3,4)+⊕sp(χ1,2)+sp(χ
5,6)+

)

⊕ sp(y1,2)+sp(y
5,6)+

]

,

ˆ
b
′
1
ˆ
b
′
2 super-sector

[

(ψµ, χ1,2) ⊕ sp(ψµ, χ1,2)−sp(χ
3,4,5,6)+

]

(5.9)

⊗
[(

sp(ψ
µ
)−sp(χ

5,6)+ ⊕ sp(χ1,2)+sp(χ
3,4)+

)

⊕ sp(y1,2)+sp(y
3,4)+

]

,
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b̂′1
ˆ
b
′
1 super-sector

[

(sp(ψµ, χ1,2)−sp(y
3,4,5,6)+ ⊕ sp(χ3,4,5,6)+sp(y

3,4,5,6)+
]

(5.10)

⊗
[(

sp(ψ
µ
)−sp(χ

1,2)+ ⊕ sp(χ3,4)+sp(χ
5,6)+

)

⊕ sp(y3,4)+sp(y
5,6)+

]

,

b̂′1
ˆ
b
′
2 super-sector

[

(sp(ψµ, χ1,2)−sp(y
3,4,5,6)+ ⊕ sp(χ3,4,5,6)+sp(y

3,4,5,6)+
]

(5.11)

⊗
[(

sp(ψ
µ
)−sp(χ

3,4)+ ⊕ sp(χ1,2)+sp(χ
5,6)+

)

⊕ sp(y1,2)+sp(y
5,6)+

]

,

b̂′1
ˆ
b
′
1
ˆ
b
′
2 super-sector

[

(sp(ψµ, χ1,2)−sp(y
3,4,5,6)+ ⊕ sp(χ3,4,5,6)+sp(y

3,4,5,6)+
]

(5.12)

⊗
[(

sp(ψ
µ
)−sp(χ

5,6)+ ⊕ sp(χ1,2)+sp(χ
3,4)+

)

⊕ sp(y1,2)+sp(y
3,4)+

]

,

Even though the untwisted ∅̂ super-sector corresponds to a theory with N = 2 + 1

supersymmetry, the supersymmetry is extended to N = (2 + 2) + (1 + 3) because of

the extra left- and right-moving gravitini arising from the b̂′1, b̂
′

1,b̂
′

2 and b̂
′

1b̂
′

2 twisted super-

sectors. There are two extra left-moving gravitini from b̂
′

1 and three right moving ones from

b̂
′

1,b̂
′

2 and b̂
′

1b̂
′

2. This supersymmetric extensions happens due to the left-and right- moving

“holomorphic” structure of b′1, b
′
2, b

′
3. Thus, the twisted construction still has maximal

N = 8 supersymmetry constructed in a twisted manner.

A way to reduce the left- and right- supersymmetry is to couple the lattice characters

(γ, δ) and (A,B) to the left- and right- helicities and (twisted) R-symmetry charges. We

will first construct two versions of the N = 2 + (1 + 1) supergravity model containing

six and eight extra vector multiplets. Then we will reduce further the supersymmetry to

obtain the magic MN=2
3 .

5.1 N = 2 + (1 + 1) supergravity, with MN=4
nA

= SU(1,1)
U(1) × SO(6, nA)

S(6)×SO(nA)

In order to reduce the supersymmetry to N = 2 + (1 + 1) one has to eliminate from the

massless sectors the gravitini coming from the b̂′1, b̂
′

1 and b̂
′

2 twisted super-sectors. One

way to do that is to use the lattice characters (γ, δ) and (A,B) to impose Z2 projections.

Inserting in the N = 8 partition function ZN=8 the phase

ZN=8 −→ ZA
N=4 (5.13)

= ZN=8 (−)δ(A+h1+h1+h2)+γ(B+g1+g1+g2)+(A+h1+h1+h2)(B+g1+g1+g2)

imposes in the massless states the constraint

(−)A+h1+h1+h2 = +1 (5.14)

which eliminates the b̂′1, b̂
′

1, b̂
′

2 as well as the b̂′1b̂
′

1b̂
′

2 super-sectors. Naively one obtains a

N = 2 + 2 supergravity model with two left- one right-moving supersymmetries from the

∅̂ super-sector and one right-moving supersymmetry from the b̂
′

1b̂
′

2 super-sector.
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The same sectors can be eliminated with a different choice of the phase,

ZN=8 −→ ZN=4 (5.15)

= ZN=8 (−)δ(h1+h1+h2)+γ(g1+g1+g2)+(h1+h1+h2)(g1+g1+g2)

imposing the constraint

(−)h1+h1+h2 = +1 (5.16)

Both ZA
N=4 and ZN=4 have N = 4 supersymmetry. However, due to the holomorphic

structure of the A-set in the ZA
N=4 model, some extra massless states arise from the Âb̂′1b̂

′

1b̂
′

2

super-sector. In the ZN=4 as well as in the initial ZN=8 model these extra massless states

are projected out due to the B-projection.

The massless states of the ZN=4 are those of the N = 4 supergravity coupled to six

extra vector multiplets. There are 38 scalars parameterizing the manifold:

MN=4
6 =

SU(1, 1)

U(1)
×

SO(6, 6)

SO(6) × SO(6)
. (5.17)

In the ZA
N=4 construction there are extra massless states from the Âb̂′1

ˆ
b
′
1
ˆ
b
′
2 super-sector

Âb̂′1
ˆ
b
′
1
ˆ
b
′
2 super-sector

[

(sp
(

ψµ, χ1,2
)

−
sp

(

w3,4,5,6
)

+
⊕ sp

(

χ3,4,5,6
)

+
sp

(

w3,4,5,6
)

+

]

(5.18)

⊗
[(

sp(ψ
µ
)−sp(χ

5,6)+ ⊕ sp(χ1,2)+sp(χ
3,4)+

)

⊕ sp(y1,2)+sp(y
3,4)+

]

.

In the ZA
N=4 the extra vector multiplets are eight and the total number of scalars is 50 that

parameterize the manifold:

MN=4
8 =

SU(1, 1)

U(1)
×

SO(6, 8)

SO(6) × SO(8)
. (5.19)

In the next subsection starting from the MN=4
8 model, we will construct the magic MN=2

3

by an “helicity twisting mechanism” similar to the one we had introduced in the construc-

tion of the MN=2
6 .

5.2 MN=4
8 −→ magic MN=2

3

The magic MN=2
3 can be obtained from the asymmetric ZA

N=4 construction breaking the

2 right-moving supersymmetry via the insertion of a phase

ZA
N=4 −→ Z

Magic3
N=2

= ZA
N=4 (−)B(h1+a)+A(g1+b)+AB (5.20)

which couples the left-twisted arguments (h1, g1) and the right-helicity charges (a, b) with

the lattice arguments (A,B). The phase factor (−)AB cancels the one appearing in the

ZN=8 and ZA
N=4 partition function. The induced B-constraint for the massless states is

(−)h1+a = +1

eliminating all massless states of MN=4
8 with (−)h1+a = −1. The remaining states are then:

– 15 –



J
H
E
P
0
2
(
2
0
0
8
)
0
9
7

Massless spectrum of the magic MN=2
3 .

∅̂ super-sector, (h1 = 0, a = 0)

[

(ψµ, χ1,2) ⊕ sp(ψµ, χ1,2)−sp(χ
3,4,5,6)+

]

⊗
[

ψ
µ

]

, (5.21)

1 graviton, 2 gravitini, 2 spin-1/2 fermions, 2 gauge bosons and 2 scalars.

ˆ
b
′
1
ˆ
b
′
2 super-sector, (h1 = 0, a = 0)

[

(ψµ, χ1,2) ⊕ sp(ψµ, χ1,2)−sp(χ
3,4,5,6)+

]

(5.22)

⊗
[

sp(χ1,2)+sp(χ
3,4)+sp(y

1,2)+sp(y
3,4)+

]

,

4 spin-1/2 fermions, 2 gauge bosons and 4 scalars.

b̂′1
ˆ
b
′
1 super-sector, (h1 = 1, a = 1)

[

(sp(ψµ, χ1,2)−sp(y
3,4,5,6)+ ⊕ sp(χ3,4,5,6)+sp(y

3,4,5,6)+
]

(5.23)

⊗
[

sp(ψ
µ
)−sp(χ

1,2)+sp(y
3,4)+sp(y

5,6)+

]

,

4 spin-1/2 fermions, 2 gauge bosons and 4 scalars.

b̂′1
ˆ
b
′
2 super-sector, (h1 = 1, a = 1)

[

(sp(ψµ, χ1,2)−sp(y
3,4,5,6)+ ⊕ sp(χ3,4,5,6)+sp(y

3,4,5,6)+
]

(5.24)

⊗
[

sp(ψ
µ
)−sp(χ

3,4)+sp(y
1,2)+sp(y

5,6)+

]

,

4 spin-1/2 fermions, 2 gauge bosons and 4 scalars.

Âb̂′1
ˆ
b
′
1
ˆ
b
′
2 super-sector (h1 = 1, a = 1)

[

(sp(ψµ, χ1,2)−sp(w
3,4,5,6)+ ⊕ sp(χ3,4,5,6)+sp(w

3,4,5,6)+
]

(5.25)

⊗
[

sp(ψ
µ
)sp(χ

5,6)+sp(y
1,2)+sp(y

3,4)+

]

.

4 spin-1/2 fermions, 2 gauge bosons and 4 scalars.

The N = 2 graviton multiplet comes from the ∅̂ super-sector. The same super-sector

contains one vector multiplet as well. There are eight additional vector multiplets from the

other super-sectors. In total the number of scalars is 18 and they parameterize the Magic

N = 2 manifold

M3 =
SU(3, 3)

S(U(3) × U(3))
, (5.26)

This manifold is based to the N = 2 holomorphic prepotential

F (Z0, Z
ij) = −i

Det(Zij)

Z0
= −iZ2

0 Det(tij) , (5.27)

– 16 –
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where the 3 × 3 matrix Zij parameterizes the nine complex scalars (tij = Zij/Z0). The

Kähler potential associated to the magic MN=2
3 is:

K = − log iDet(tij − t
ij
) (5.28)

and has the property to be identical to the N = 3 supergravity coupled to three extra

vector multiplets.

Utilizing the same basis sets as in the 4d construction of MN=2
3 and performing similar

operations it is straightforward to define the reduced theory in three space time dimensions.

Via 3d duality transformation acting on 3d vectors the 3d manifold is extended to:

18 (4d-scalars) + 18 (4d-vectors) + 2 (4d-graviphoton) + 2 (3d-graviphoton, g3,µ) = 40.

The obtained 3d theory is that of the magic square with scalar manifold

MD=3
3 =

E6(2)

SU(2) × SU(6)
, (5.29)

as expected by the c−map operation.

One expects via oxidation to five space-time dimensions to construct the scalar mani-

fold of the magic square with 8 5d-scalars:

MD=5
3 =

SL(3, C)

SU(3)
. (5.30)

Although this operation looks straightforward in field theory set-up there is an obstruction

in the above stringy construction where all internal left-moving coordinates are twisted.

It is therefore impossible to construct this model in our set-up. This obstruction however

does not prevent the stringy existence of MD=5
3 via asymmetric orientifold construction or

else which appear non-perturbative from the type II “close strings” framework. Hopefully,

we will return and try to clarify this obstruction in near future.

6. Discussion

Several type II superstring vacua with N = 2 supersymmetry can be constructed. In this

work we focussed our attention on those which do not contain in their massless spectrum

any hypermultiplet. In this class of vacua the scalar manifold of the vector supermultiplets

is always Kähler. It is interesting that for all four dimensional hyper-free constructions, the

internal compactification is necessarily not a Calabi-Yau manifold or more generally the

world-sheet superconformal symmetry is not based on N = (2, 2) but rather on N = (4, 1).

Indeed, their constructions is left-right asymmetric and can be realized by asymmetric

orbifolds via 2d-fermionic construction.

The minimal hyper-free theory with only one massless vector multiplet has been con-

structed. This theory contains a single minimally coupled vector multiplet S associated to

the axion-dilaton pair. This theory is exotic from the viewpoint of Calabi-Yau compactifi-

cation where the vector multiplets are conformaly (non-minimally) coupled. Furthermore,

this theory is universal in the sense that is a part of the spectrum of all the other more

complex models.

– 17 –
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Among the hyper-free N = 2 theories two of them are special. They are known to

be in correspondence with the symmetric spaces of the “magic square” and furthermore

are associated to the Jordan algebras JC
3 and JH

3 . They have the additional remarkable

property to share the same scalar field content as some supergravity models with more

supersymmetry, N = 6 and N = 3. The one associated to the N = 6 turns out to be very

special since not only the scalar degrees of freedom but all the bosonic massless degrees of

freedom are the same as the N = 6 supergravity theory.

The superstring realization of the two N = 2 of the magic square turns out to be

non-trivial. We were able to construct them by introducing a “twisting mechanism” that

eliminates the extra gravitini of the N = 3 and N = 6 supergravities and creates at the

same time the extra spin-1
2 fermions and spin-1 gauge bosons that are necessary to balance

the N = 2 boson-fermion degeneracy.

The “twisting mechanism” is interesting by itself. It is a well defined operation in

string theory and is based on “holomorphic Z2-orbifold stringy constructions”:

(i) The four left-moving gravitini are reduced to two as usually by a Z2-projection.

(ii) Due to the holomorphic structure of the projection two extra gravitini appears in the

“twisted” sector and thus obtain a “twisted N = (2+2)+4 realization” of the N = 8

supergravity.

(iii) The breaking of the four right-moving supersymmetry is realized via a coupling of

the lattice charges to the right-helicity charge a and left-twisted charge h, imposing

the constrain (h + a) = 0 mod 2. This constrain breaks the two left- and the four

right-moving supersymmetry but keeps the gauge bosons and scalars coming from

the N = 2 + 4 Ramond-Ramond states.

The above three steps define the “twisting mechanism” applied in the case of the magic

N = 2 associated to the N = 6 supergravity. Although this mechanism is well defined in

string theory it is not yet known how it could be realized in a Z2-truncated supergravity

for two main reasons:

(i) From where could the twisted gravitini appear?

(ii) How one can define the R-symmetry charges associated to the “twisted states”?

The “twisting mechanism” is even more involved in the case of the N = 2 magic associated

to the N = 3 supergravity coupled to three extra vector multiplets. Here one starts from

a “twisted N = 2 + (1 + 1) realization” of N = 4 supergravity coupled to eight extra

vector multiplets. Then, the constraint (h + a) = 0 mod 2 is introduced which reduces

the supersymmetry to N = 2 + 0. Here also the construction is “stringy”. It is an

open interesting problem if an analogous construction can be realized in a Zn
2 -truncated

supergravity theories.

By reduction to three space-time dimensions, we are able to construct at the

string level two other theories of the magic square namely: MD=3
6 =

E7(−5)

SU(2)×SO(12) , and

MD=3
3 =

E6(2)

SU(2)×SU(6) .
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By oxidation in five space-time dimensions the construction of MD=5
6 = SU∗(6)

USP (6) of the

magic square is also achieved at the string level. However, in our stringy set-up, there is an

obstruction to define MD=5
3 = SL(3,C)

SU(3) since all six right-moving coordinates are twisted

and this prevents the oxidation procedure in five-dimensions. On the other hand this

obstruction does not implies in general the non-existence at the string level of MD=5
3 . It is

possible that this theory exists at the string level via other constructions like “asymmetric

orientifolds” that may appear as non-petrurbative constructions from “closed string” set-up

we had explored here. It remains an open and very interesting question the stringy existence

of the other theories of the magic square, in three, four and five space-time dimensions:

D = 5
SL(3, R)

SO(3)
[5],

SL(3, C)

SU(3)
[8],

SU∗(6)

USP(6)
[14],

E6(−26)

F4
[26]

D = 4
SP(6, R)

U(3)
[12],

SU(3, 3)

U(1) × SU(3) × SU(3)
[18],

SO∗(12)

U(6)
[30],

E7(−25)

U(1) × E6
[54]

D = 3
F4,4

USP(6)×SU(2)
[28],

E6(2)

SU(2)×SU(6)
[40],

E7(−5)

SO(12)×SU(2)
[64],

E8(−24)

SU(2)×E7
[112]

Indeed, the explicit constructions at the string level of the magic N = 2 theories extends

the validity at the string level of the entropy formulas obtained via the BPS and non-BPS

attractor mechanism introduced in refs [19].

Finally, it will be very interesting to study supersymmetric string vacua and their

effective supergravity theories that will be eventually obtained via a “generalized twist-

ing mechanism”; not only in type II theories, but also in heterotic as well as in type II

orientifolds with brane and fluxes.

After the submission of this work an interesting paper appeared, by M. Bianchi and S.

Ferrara [20], where two other magic square N4 = 2 theories are obtained via an asymmetric

orientifold construction, namely

M7 =
E7(−25)

U(1) × E6

in four space-time dimensions and

M8 =
E8(−24)

SU(2) × E7

in three dimensions. Even more interesting is the simultaneous appearance in their con-

struction of the two magic scalar manifolds in the same four dimensional N = 2 theory,

with M7 as the scalar manifold of the vector multiplets and M8 the one of the hyper-

multiplets. In three space time dimensions one obtains a double magic theory based on

M8 × M8, since M8 is derived by M7 via a three dimensional c-map. This doubling of

the manifold is absent in our hyper-free construction. In the same work M. Bianchi and S.

Ferrara underlined the importance of string magic theories for the validity of the entropy

formulae obtained via the BPS and non-BPS attractor mechanism, (for an updated view

of the subject, see [21]).
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